Actuators for the generation of highly nonlinear solitary waves.
نویسندگان
چکیده
In this paper we present the design of two actuators for the generation of highly nonlinear solitary waves (HNSWs), which are mechanical waves that can form and travel in highly nonlinear systems. These waves are characterized by a constant spatial wavelength and by a tunable propagation speed, dependent on the wave amplitude. To date, the simplest and widely adopted method to generate HNSWs is by impacting a striker onto a chain of beads of equal size and mass. This operation is conducted manually and it might be impracticable if repetition rates higher than 0.1 Hz are necessary. It is known that the HNSWs' properties, such as amplitude, duration, and speed can be modified by changing the size or the material of the particles, the velocity of the striker, and/or the precompression on the chain. To address the limitations associated with the manual generation of HNSWs we designed, built, and tested two actuators. The first actuator consists of a chain of particles wrapped by an electromagnet that induces static precompression on the chain. This design allows for the generation of solitary waves with controlled properties. The second actuator consists of a chain surmounted by an electromagnet that lifts and releases a striker. This actuator permits the remote and noncontact generation of solitary waves. The performance of both actuators is evaluated by comparing the experimental HNSWs to theoretical predictions, based on the long wavelength approximation.
منابع مشابه
Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملCompressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملA Study of Bit Condition for Generation Rx -Mode Waves: Interaction of Particles with Z/UH-Mode Waves
Interactions of charge particles with electromagnetic waves have important effects (linear and nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in generation of the new mode waves. Besides, the particle energies can play an important role in causing instability in plasma. The values of parallel energy of the particles have been calculated so that they can ...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 82 3 شماره
صفحات -
تاریخ انتشار 2011